A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search

نویسندگان

  • Shu-Kai S. Fan
  • Yun-Chia Liang
  • Erwie Zahara
چکیده

This paper integrates Nelder–Mead simplex search method (NM) with genetic algorithm (GA) and particle swarm optimization (PSO), respectively, in an attempt to locate the global optimal solutions for the nonlinear continuous variable functions mainly focusing on response surface methodology (RSM). Both the hybrid NM–GA and NM–PSO algorithms incorporate concepts from the NM, GA or PSO, which are readily to implement in practice and the computation of functional derivatives is not necessary. The hybrid methods were first illustrated through four test functions from the RSM literature and were compared with original NM, GA and PSO algorithms. In each test scheme, the effectiveness, efficiency and robustness of these methods were evaluated via associated performance statistics, and the proposed hybrid approaches prove to be very suitable for solving the optimization problems of RSM-type. The hybrid methods were then tested by ten difficult nonlinear continuous functions and were compared with the best known heuristics in the literature. The results show that both hybrid algorithms were able to reach the global optimum in all runs within a comparably computational expense. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HYBRID MODIFIED GENETIC-NELDER MEAD SIMPLEX ALGORITHM FOR LARGE-SCALE TRUSS OPTIMIZATION

In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...

متن کامل

Cuckoo Search Inspired Hybridization of the Nelder-Mead Simplex Algorithm Applied to Optimization of Photovoltaic Cells

A new hybridization of the Cuckoo Search (CS) is developed and applied to optimize multicell solar systems; namely multi-junction and split spectrum cells. The new approach consists of combining the CS with the Nelder-Mead method. More precisely, instead of using single solutions as nests for the CS, we use the concept of a simplex which is used in the NelderMead algorithm. This makes it possib...

متن کامل

حل مسئله پخش بار بهینه در شرایط نرمال و اضطراری با استفاده از الگوریتم ترکیبی گروه ذرات و نلدر مید (PSO-NM)

In this paper, solving optimal power flow problem has been investigated by using hybrid particle swarm optimization and Nelder Mead Algorithms. The goal of combining Nelder-Mead (NM) simplex method and particle swarm optimization (PSO) is to integrate their advantages and avoid their disadvantages. NM simplex method is a very efficient local search procedure but its convergence is extremely sen...

متن کامل

Nelder-Mead Evolutionary Hybrid Algorithms

Real world optimization problems are often too complex to be solved through analytic means. Evolutionary algorithms are a class of algorithms that borrow paradigms from nature to address them. These are stochastic methods of optimization that maintain a population of individual solutions, which correspond to points in the search space of the problem. These algorithms have been immensely popular...

متن کامل

Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Industrial Engineering

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006